
Integrated Fourier Features for Fast Sparse
Variational Gaussian Process Regression

Talay M Cheema (tmc49@cam.ac.uk)

Background

yn = f(xn) + ρn n ∈ {1 : N}
f ∼ GP(0, k ), ρn ∼ N(0, σ2)

▶ Exact GP regression has O(N3) cost
▶ Variational GP regression introduces um =

∫
f(x)ϕ(x)dx,m ∈ {1 : M}

reducing the cost to O(NM2).
▶ Classic sparse GP regression (SGPR) uses ϕ(x) = δ(zm)
▶ Fourier features can have O(M3) cost per optimiser step –

moving all the O(N) cost out of the loop.
▶ If f is stationary (k (x, x′) depends only on x − x′) then
ϕ(x) = e−i2πzmx generates independent features, but they have
unbounded variance.

▶ Previously proposed variational Fourier features work around this
using various tricks – but are limited to only a few choices of k
and restrictive choices on the approximating frequencies zm.

Integrated Fourier Features

The underlying problem is that if the spectral density of k is s, the Fourier
transform of f is a white noise process,

f̄(ξ) ∼ GP(0, s(ξ)δ(ξ − ξ′))

so conditioning on M points is ineffective. We propose to instead sample by
local averaging.

um = ε−1
∫ zm+ε/2

zm−ε/2

f̄(ξ)√
s(ξ)

dξ

Then the correlation between um and f is hard to evaluate. Avoid this by
assuming ε is small.

E[umf(x)] = ε−1
∫ zm+ε/2

zm−ε/2

√
s(ξ)e−i2πξxdξ ≈

√
s(zm)e−i2πzmx

(a) Prior

(b) Conditioning on Fourier features

(c) Conditioning on Integrated Fourier Features

Figure 1: Means in dashed, confidence intervals shaded, samples in solid
lines. The Fourier transforms on the right correspond to the functions on the
left.

Convergence
Theorem. Convergence for large N with sub-Gaussian density.
Assume that s has bounded first and second derivatives everywhere, and
that we have a tail bound

∫ ∞
ξ

s̃(ξ′)dξ′ ∈ O(e−ξ). Select the inducing features
ε apart centred on the origin, that is zm = (−(M + 1)/2 + m)ε, with M even.
Let ε ∈ O(M−1+a) for some a ∈ (0, 1). Then if y is sampled from the
generative model. For any ∆, δ > 0, there exists M0, α > 0 such that for
M ≥ M0

Pr[DKL(q(f)||p(f |y))/N > ∆/N] ≤ δ ⇐⇒ M ≤
(
α

∆δ
N
) 1

2−3a

Since we can take any a ∈ (0, 1), we can optimise the rate by taking a → 0,
which leads to M ∈ O(

√
N).

▶ DKL(q(f)||p(f |y)) is the KL divergence from the approximate posterior
to the true posterior.

▶ Convergence is dominated by the need to make ε small.
▶ Generalises to heavier tailed spectral densities and higher

dimensions.
▶ However, M goes up exponentially in dimension.

Computational cost
Use K̄zz = E[uu∗] = ε−1I,Czx = E[uf(x)∗], and S for a diagonal matrix of
spectral densities.

F (µu,Σu) = logN(y |0, C∗zxK̄−1
zz Czx + σ

2I) −
1
2
σ−2tr(Kxx − C∗zxK̄−1

zz Czx)

Rearranging using matrix determinant lemma/matrix inversion lemma yields
that the dominant cost relates to

ε−1S−1 + σ−2S−1/2CzxC∗zxS−1/2

▶ σ−2S−1/2CzxC∗zxS−1/2 costs O(NM2) to form–but doesn’t depend on
the hyperparameters.

▶ The O(N) cost is taken out of the loop if the frequencies are kept
fixed.

▶ When N is large, this is much faster than SGPR.
▶ Theory suggests making ε small is the limiting factor in convergence

– but in practice, ε around the inverse data diameter is sufficient.
▶ Flexible choice of zm opens the way to better performance in higher

dimensions.

Figure 2: Synthetic plots. Orange is IFF and blue is SGPR initialised with K means. L is the log marginal likelihood, F (θ) is the variational lower bound, each
at learnt hyperparmaeters θ. The right most plot is L − F for different settings of lengthscale λ and data diameter Wx.


