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Background

Yn=f(Xn) +pn nef{l:Nj
f ~ GP(0,k), pn~ N(0,0?)

» Exact GP regression has O(N°) cost

» Variational GP regression introduces um = [ f(x)¢(x)dx,m € {1 : M
reducing the cost to O(NM?).

» Classic sparse GP regression (SGPR) uses ¢(x) = 6(zm)

» Fourier features can have O(M?) cost per optimiser step —
moving all the O(N) cost out of the loop.

> If fis stationary (k(x, x") depends only on x — x’) then
¢(x) = e~"#™?mX generates independent features, but they have
unbounded variance.

» Previously proposed variational Fourier features work around this
using various tricks — but are limited to only a few choices of k
and restrictive choices on the approximating frequencies z,,.

Integrated Fourier Features

The underlying problem is that if the spectral density of k is s, the Fourier
transform of f Is a white noise process,

f(&) ~ GP(0,s(£)s(¢ - &))

so conditioning on M points is ineffective. We propose to instead sample by

local averaging. -
U — & fzm+8/ f(£) de
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Then the correlation between u,, and f is hard to evaluate. Avoid this by
assuming < is small.

Zm+e/2
J[Umf(x)] — o] f \/g(é_.)e—iZﬂfxdé; ~ \/S(Zm)e—iZﬂzmx

Convergence

Theorem. Convergence for large N with sub-Gaussian density.
Assume that s has bounded first and second derivatives everywhere, and
that we have a tail bound j;o 5(&£)d¢” € O(e™*). Select the inducing features

¢ apart centred on the origin, that is z,, = (-(M + 1)/2 + m)e, with M even.
Let £ € O(M~'*2) for some a € (0, 1). Then if y is sampled from the
generative model. For any A, 6 > 0, there exists My, @ > 0 such that for

M > M

PriD (A(NIP(Y)/N > AIN <6 = M<(=N)

Since we can take any a € (0, 1), we can optimise the rate by taking a — 0,
which leads to M € O( VN).

> Dy (q(f)llp(fly)) is the KL divergence from the approximate posterior
to the true posterior.

» Convergence is dominated by the need to make £ small.

» Generalises to heavier tailed spectral densities and higher
dimensions.

» However, M goes up exponentially in dimension.
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(c) Conditioning on Integrated Fourier Features

Figure 1: Means in dashed, confidence intervals shaded, samples in solid
lines. The Fourier transforms on the right correspond to the functions on the
left.

Computational cost

Use K, = E[uu*] = &1, C,x = E[uf(x)*], and S for a diagonal matrix of
spectral densities.

X L/ — 1 — % —
F(ty, o) = log N(y10, C:K,) Cox + 0°1) — >0 “tr(Kyx — C1 K2, Coy)

Rearranging using matrix determinant lemma/matrix inversion lemma yields
that the dominant cost relates to

e 'S +07°87"%C,,C;, 877

» 025712C,C; 512 costs O(NM?) to form—but doesn’t depend on
the hyperparameters.

» The O(N) cost is taken out of the loop if the frequencies are kept
fixed.

» When N is large, this is much faster than SGPR.

» Theory suggests making € small is the limiting factor in convergence
— but in practice, € around the inverse data diameter is sufficient.

» Flexible choice of z,, opens the way to better performance in higher
dimensions.
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Figure 2: Synthetic plots. Orange is IFF and blue is SGPR initialised with K means. L is the log marginal likelihood, 7 (6) is the variational lower bound, each
at learnt hyperparmaeters 6. The right most plot is £ — & for different settings of lengthscale A and data diameter W,.



