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Abstract

Gaussian processes (GPs) are Bayesian non-parametric models popular in a variety of appli-

cations due to their accuracy and native uncertainty quantification (UQ). Tuning GP hyperpa-

rameters is critical to ensure the validity of prediction accuracy and uncertainty; uniquely esti-

mating multiple hyperparameters in, e.g. the Matérn kernel can also be a significant challenge.

Moreover, training GPs on large-scale datasets is a highly active area of research: traditional

maximum likelihood hyperparameter training requires quadratic memory to form the covariance

matrix and has cubic training complexity. To address the scalable hyperparameter tuning prob-

lem, we present a novel algorithmwhich estimates the smoothness and length-scale parameters

in the Matèrn kernel in order to improve robustness of the resulting prediction uncertainties.

Using novel loss functions similar to those in conformal prediction algorithms in the computa-

tional framework provided by the hyperparameter estimation algorithm MuyGPs, we achieve

improved UQ over leave-one-out likelihood maximization while maintaining a high degree of

scalability as demonstrated in numerical experiments.

Gaussian Processes

Let kθ(x, x′) be the kernel function, which generates the covariance between x and x′ and is
controlled by hyperparameters θ [1]. Y is a Gaussian process if for every finite sample of Y ,
Y (X) ∼ N (m(X), Kθ(X, X)) with m(X) the mean and Kθ(X, X) the covariance.
Let Γ(·) be the gamma function and Kν the modified Bessel function of the second kind. We

assume Kθ(X, X) is induced by the Matérn kernel with θ = [γ2, ρ, ν, τ ] and ‖x − x′‖2 = d,

kθ(x, x′) = γ2
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MuyGPs

Conventional GP training is prohibitively expensive at large-scale (O(n3) for n training
points).

MuyGPs is an approximate hyperparameter training algorithm that achieves efficiency by:

(1) Utilizing loss functions based on leave-one-out cross-validation (LOOCV), (2) Localizing

kernel matrices and therefore predictions to nearest neighbor training data, and (3) batching.

MuyGPs conditions a training feature vector xi only on its k nearest neighbors XNi
,

Ŷθ(xi|XNi
) = Kθ(xi, XNi

)Kθ(XNi
, XNi

)−1Y (XNi
), (2)

Var(Ŷθ(xi | XNi
)) = Kθ(xi, xi) − Kθ(xi, XNi

)Kθ(XNi
, XNi

)−1Kθ(XNi
, xi). (3)

We minimize a loss function Q(θ) over a randomly sampled batch B of training points.
θ̂ = arg min

θ
QB(θ). (4)

Using loss functions such as leave-one-out-likelihood (LOOL), evaluating the loss function

requires O(bk3) � O(n3) FLOPS, cheaper than log-likelihood maximization.
MuyGPs predicts the response distribution for a novel point z with neighbors XN∗ via

Ŷ
θ̂
(z|X) = K

θ̂
(z, XN∗)K

θ̂
(XN∗, XN∗)−1Y (XN∗), (5)

Var(Ŷ
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(XN∗, z). (6)

Coverage Penalized Leave-One-Out-Likelihood for Calibration

We formulate the LOOL loss function computed using LOOCV and local Kriging.

QB(θ) =
∑
i∈B

log(σ2
i (θ)) + (Y (xi) − µi(θ))2

σ2
i (θ)

. (7)

µi(θ) (Eqn. 2) and σ2
i (θ) (Eqn. 3) are the posterior mean and variance of the ith batch point.

Let zα be a z-score corresponding to a given confidence level α, e.g., z0.95 = 1.96. The
coverage function cα(θ) is given by the fraction of ground truth response values for i ∈ B
which lie with a confidence interval of width zασi(θ) around µi(θ).

cα(θ) = 1
b

∑
i∈B

1(µi(θ)−zασi(θ), µi(θ)+zασi(θ))(Y (xi)). (8)

We introduce a sequence ofm confidence levels {αj}m
j=1 as a penalty on the LOOL.

Let Cα(θ) = [cαj(θ)]mj=1 and α = [αj]mj=1 respectively.

min
θ

Q(θ) + β

2
‖Cα(θ) − α‖2

2,

s.t Cα(θ) = α.
(9)

We formulate the augmented Lagrangian.

L(θ, λ; β) = Q(θ) + 〈λ, Cα(θ) − α〉 + β

2
‖Cα(θ) − α‖2

2. (10)

We use the method of multipliers (MM) to train hyperparameters θ.

Numerical Experiments

We sample data from a univariate Gaussian process on the unit interval [0, 1] and vary ν and ρ
for (ν, ρ) = (0.135, 0.95), (0.425, 0.625), (0.635, 0.475), and (0.965, 0.125).

95th Percentile Statistical Coverage Values Across All Datasets

Figure 1. Violin plots of 95th percentile statistical coverage for MSE (left panel), LOOL and MM (right panel). The

red dashed line indicates the target coverage value of 95 percent.

MM achieves coverage closer to 95 percent with much lower variance than LOOL.

Climate Science Application

Dataset: land surface temperatures measured on August 4, 2016 on a 500 × 300 grid
between longitudes -95.91153 and -91.28381 and latitudes 34.29519 to 37.06811, with

105,569 training observations and 42740 testing observations (see [3]).

Surface Temperature Training and Testing Datasets

Figure 2. Zero-mean rescaled training and testing data for the surface temperature prediction problem.

Performance Metrics for LOOL and MM on the Surface Temperature Dataset

Figure 3. From top left to bottom right: the mean absolute error (MAE), root MSE, 95th percentile statistical

coverage, continuous rank probability score (CRPS) [4], and interval score (INT) [4] for surface temperature dataset
from the GP competition paper [3]. LOOL is shown in the orange violin on the left in each panel. MM is shown in
green on the right in each panel.

MM and LOOL outperform all methods in the competition paper [3] (best MAE and RMSE of
1.10 and 1.53) and original MuyGPs algorithm in [2] (best MAE and RMSE of 1.07 and 1.53).
Because the optimal value of ν in this case is closer to 1, the identification of the smoothness
parameter is more difficult.
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