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Abstract

Ice cores record crucial information about past climate. However, before ice core
data can have scientific value, the chronology must be inferred by estimating the age
as a function of depth. Under certain conditions, chemicals locked in the ice display
quasi-periodic cycles that delineate annual layers. Manually counting these noisy
seasonal patterns to infer the chronology can be an imperfect and time-consuming
process, and does not capture uncertainty in a principled fashion. In addition,
several ice cores may be collected from a region, introducing an aspect of spatial
correlation between them. We present an exploration of the use of probabilistic
models for automatic dating of ice cores, using probabilistic programming to
showcase its use for prototyping, automatic inference and maintainability, and
demonstrate common failure modes of these tools.

1 Introduction

Chemicals in the atmosphere are deposited onto ice sheets through precipitation, with further deposi-
tion burying and eventually compacting the snow into solid ice, recording the chemical composition
of the atmosphere. These chemicals provide evidence for the climate of the past and are known as
proxy variables. Annual cycles can be present in the data if 1) the abundance of that proxy varies
seasonally, 2) the precipitation rate at the ice core site is large enough, and 3) the depth is not so
great that the annual layers have been excessively compressed. Given these conditions, annual layer
thickness is dictated by the amount of annual precipitation (a random component) and compression
of the ice with increasing depth (a systematic component). A section of the data that we used, the
Jurassic ice core from Emanuelsson et al. [2022], is shown in Figure 1.

Constructing an ice core’s timescale manually through layer counting can be an arduous process,
lasting from days to years of person-time (Winstrup 2016). Manual counting also has the disadvantage
of poorly-quantified uncertainty in the depth to time mapping, based on heuristics from expert
disagreement or uncertain layers. Probabilistic inference leads to a more principled treatment of such
uncertainties. A probabilistic approach also enables prior knowledge to be incorporated during ice
core timescale inference. For example, some observations for time at certain depths may be available
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Figure 1: Section of the data, showing annual seasonality in MSA (a proxy exhibiting a strong
seasonal pattern) plotted against depth. Manually counted annual layers are overlaid as shaded bars.

due to known volcanic events depositing a layer of ash in the ice (these depth-time observations are
known as tie-points).

Our contribution is to present a case study in developing models for the ice core dating problem
using a Probabilistic Programming Language (PPL), mainly Stan [Stan Development Team, 2022]
alongside torchsde [Li et al., 2020], and TensorFlow Probability [Dillon et al., 2017]. Our work
highlights such tools to practitioners at the intersection of probabilistic machine learning and climate
science. We aim to show the promise of PPLs in how they can enable the composition of assumptions,
easy experimentation, model extension and maintainability. A core promise of widely used PPLs is
that they automate and abstract away inference details, thus ensuring that models are written at the
right level of abstraction without the need to write and maintain complex inference algorithms. We
also show current limitations of these tools, such as inference only being computationally feasible
over a limited set of models that may be suitable for a task, and inference methods being limited in
practice depending on the specific functional requirements set out for each PPL.

2 Problem Setup

The proxy variables are measured in ice cores along a depth dimension. We represent the depth
series as a set of known random variables δ := {δi}ni=1, δi ∈ R+ where n is the number of sampled
depths at which proxy readings are available. The depth series δ is mapped to latent time (age) values
associated with each observation, represented by the stochastic process t := {tδi}ni=1 indexed by
the depth series. Proxy measurements are denoted as s := {sδi}ni=1, with sδi ∈ R. The ice core
dating process can be stated as an inference problem for time conditioned on the proxy and depth
data, t|s, δ. Within this work, we assume that proxies depend only on the latent time process, the
depth to time mapping is monotonic, and that there is only one proxy available with a clear seasonal
signal. This gives rise to the class of models shown in Fig. 4 (a), in the Appendix.

3 Methodology

The setup of the problem gives rise to a class of models that vary in their assumptions and complexity
from discrete-index HMMs to continuous-index HMMs to SDE-based models. Some of these models,
particularly HMMs, were previously studied by Winstrup [2011, 2016] who explored the the effect of
batching, the usage of other observation models and extensions to hidden semi-Markov models (for
allowing for priors to be set over lengths of year boundaries) and inference therein.

3.1 A Hidden Markov Model

Model Under the assumption that the depth-sampling is uniform, and that the latent time process
has a discrete domain, we can model the latent time process as a Markov chain. If in addition, the
proxies are conditionally independent given the time periods they correspond to, the framework in
Figure 4 (a) reduces to a Hidden Markov Model shown in Figure 4 (b). We assume that t can occupy
states ∀i : tδi ∈ {k/ns}m·ns

k=1 , where ns is the number of states within each yearly cycle and m is an
arbitrarily large number of years. The transition matrix

P(tδi |tδi−1
) =

p1/ns
1− p1/ns

0 · · · 0
0 p2/ns

1− p2/ns
· · · 0

0 0 0 0 1

 (1)
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is bidiagonal, with pi denoting the probability that the chain stays in state i given that it was in the
same state at the last depth measurement. In other words, as depth increases, the time process either
advances or stays the same. This enforces monotonicity of the latent time sequence w.r.t. depth and
also allows one to track what year an observation corresponds to (given by the floor of the state, ⌊i⌋).
The parameters for each state within a year are repeated across years to constrain the model (i.e.
pc+k/ns

= pk/ns
for c ∈ N). The following observation model is used as part of the HMM,

∀i : sδi |tδi ∼ N (a cos(2πtδi) + b, σ2).

Note that, as the transition matrix parameters are not constant within each annual layer, the model’s
annual layer shapes can be a warping of the mean cosine function in the observation model, enabling
some flexibility in modelling the real proxy cycle shapes.

Inference Using the Stan language, we perform maximum likelihood inference for the parameters
given data with time marginalised (a, b, σ, {p}j |s), with the posterior over times t|s, a, b, σ, {p}j
estimated using the forward-backward algorithm in Stan. The probabilistic program is shown in
Appendix B. Two problems are encountered with standard tooling:

• The runtimes increase quadratically w.r.t. the state space (due to the forward algorithm,
which computes the log likelihood with hidden states marginalised). We remedy this by
rewriting the forward algorithm exploiting the sparsity of our transition matrix, providing a
direct replacement of the native Stan function (shown in Appendix B). In a PPL, users can
typically implement their own efficient functions for such likelihood calculations.

• The model is misspecified as the data is expected to be non-stationary (due to compression
of the ice core and temporal variation in precipitation). This can pragmatically be remedied
by processing the data in batches, allowing the parameters such as a and b to change between
different sections of the ice core.

Inference using this implementation takes 2.5 minutes using a single-thread run, without GPU
utilization, for the entire ice core (about 2.5k observations), without requiring any special initialization
strategies.

3.2 An extension allowing for tie-point specification

To allow for tie-points to be integrated, which constrain the depth-to-time mapping, the observation
model is extended to account for non-stationarity in the signal, because accounting for tie-points
would require processing data in batches large enough to cover the tie-points. This is done by
changing the observation model to allow for parameters a, b to change with each data point along the
ice core,

∀i : sδi |tδi ∼ N (ai cos(2πtδi) + bi, σ
2),

with a prior (as part of a hierarchical model) placed over ai, bi (thus, the change is “slow”/constrained).
A similar hierarchical treatment is given to parameters of the transition matrix, using the prior

∀j ∈ 1/ns, ...,m : pj ∼ Beta(αj∗ns mod ns , βj∗ns mod ns).

This allows the transition probabilities to change over years (and hence depths). The hierarchical
distribution of states at the same point in any yearly cycle however share the same parameters,
providing some constraint.

Having extended the model to different observation models per data-point, we specify volcanic tie-
points using an alternative observation model using the state directly rather than proxy information.
We use a categorical distribution ensuring that the time states must reach the volcanic tie-points,

p(s′δtie
|tδtie) =

{
1/ns if ⌊tδtie⌋ = ttie

0 otherwise
,

to enforce that the volcanic ash observed at depth δtie corresponds to a known year of the eruption ttie.

Maximum likelihood inference for parameters such as ai, bi in such models produces subpar results,
due to posterior modes of such unidentifiable models lying outside their typical sets, raising a need
to integrate out the parameters. As MCMC is computationally infeasible due to the number of
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Figure 3: On top, a short data series with
a missing section. At the bottom, posterior
paths of time inferred using the data above -
the missing section induces multimodality in
the depth to time posterior.

parameters and data, we use mean-field variational inference (a seamless change in the Stan API).
This mode of inference greatly increases runtimes w.r.t. the model in Section 3.1 however, to about
a few hours due to the increased number of parameters. Results of inference in the two models
presented thus far is shown in Figure 2.

3.3 An extension to continuous-index Hidden Markov Models

Depth measurements may not be regularly spaced, due to missing sections of an ice core as a result
of the extraction process, or due to the sampling frequency changing over its depth. In this case,
modelling the latent time process as a continuous-index Markov chain leads to the times observed at
irregularly spaced points being described by an index-(depth) inhomogeneous Markov chain. Here,
the transition matrix associated with a step from δi−1 and δi can be computed via the transition rate
matrix Q with the same sparsity structure as Equation 1,

P(tδi |tδi−1
) = expmatrix((δi − δi−1)Q). (2)

Such models are termed continuous-time HMMs [Liu et al., 2015] (although we use the terminology
continuous-index to avoid confusion as time is not the index in our application). They allow a better
representation of posterior uncertainty arising from missing observations, as seen in Fig. 3. Inference
was performed on small datasets by using tensorflow-probability for computing log likelihoods of
HMMs in a differentiable manner. High-level pseudocode for MLE/VI when using such tools is
shown in Appendix E. Inference involving larger datasets would involve bespoke inference code due
to a lack of functionality around efficient computation of the forward algorithm involving matrix
exponentials within the PPLs considered.

3.4 An exploration of Stochastic Differential Equations for ice core dating

Assuming instead that we are working with a continuous index and a continuous state space for t, the
class of models under consideration naturally extends to state space/ SDE models. Given an index δ,
a prior over a stochastic process tδ can be formulated as,[

dzδ
dtδ

]
=

[
µ(zδ, δ)

− exp(µ′(zδ, tδ, δ))

]
dδ +

[
Σ
ϵ

]
dWδ,

with ϵ→ 0 enforcing monotonicity of sample paths and where zδ is a latent process that, for example,
can have a GP prior represented as an SDE [Särkkä and Solin, 2019]. Such a prior is similar to
the one used in Ustyuzhaninov et al. [2020]. Inference in this class of models can be performed
by specifying a variational SDE using the same diffusion but with a different drift [Li et al., 2020].
As in the case above, due to customised variational inference not being supported in Stan, we use
functionality from torchsde (differentiable solvers) that enable computation of the objective.

Inference in this class of models was particularly difficult, mirroring the findings of GPCore [An-
dersson, 2019], where a GP prior is placed on t|δ, and where maximum likelihood inference is
performed for t|s,d, in a constrained manner to ensure monotonicity in the depth-time sample paths.
The inference is very dependent on good initialisation; using existing estimates of the chronology
in the case of GPCore, and using inverse Lomb-Scargle spectrograms for zδ in our SDE models,

4



following ideas from Gay et al. [2014]. However, we had greater difficulties due to local minima than
in GPCore. More discussion on this topic can be found in Appendix F.

4 Conclusion

In this paper we presented a taxonomy of models for ice core dating, showing how simplifying
assumptions lead naturally to HMMs and how these models, and corresponding probabilistic programs
can be extended. We exemplified the shortcomings of PPLs as the models are extended towards SDEs
and discussed difficulties with inference in such models. Future work would involve extension of the
models presented to utilize multiple proxies, account for spatial correlation between ice cores, and an
exploration to determine how to aid inference in latent SDE models for such modelling tasks.

Data and Code

Code to reproduce key results in this paper can be found at https://github.com/infprobscix/icecores.
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A Appendix: Supplementary Figures

δ t s sδ1 sδ2 ...
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Figure 4: (a.) On the left, a graph that summarises the class of models under consideration. (b.) On
the right, a graph representing a hidden Markov model obtained when assumptions of the form in
Section 3.1 are made.

B Appendix: Discrete-index HMMs in Stan

Probabilistic programs in Stan are composed as blocks corresponding to,

• data and transformed data: where users can input / specify random variables for which
observations have been made and other fixed values,

• parameters and transformed parameters: where users specify random variables on which
inference is performed,

• model: where users specify distributional assumptions on and between the random variables
defined,

• generated quantities: where downstream analysis can be computed as a function of posterior
draws of the parameters conditioned on data.

Extensive documentation on example models in the Stan language, on functions and the language
can be found here

We define the data blocks in Stan as follows, for all use cases.

data {

int n; // num data

int s; // num states per year

int num_years;

vector[n] depth; // depth data

vector[n] y; // proxy data

vector[s * num_years] initial_probs;

}

transformed data {

int n_st = s * num_years; // total number of states

vector[s] year_fractions;

year_fractions = cumulative_sum(rep_vector(1.0/s, s));

simplex[n_st] rho = initial_probs + 1e-10;

rho = rho/sum(rho);

}

A simple HMM in Stan, corresponding to the model defined in Section 3.1, would consist of
parameters,

parameters {

vector<lower=0, upper=1>[s] p_diag;

real<lower=-3, upper=3> mu;

real<lower=0, upper=1> sigma;

real<lower=0, upper=2> scale;

}
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on which inference will occur. Following the stan syntax on how HMMs are defined, we define
log omega corresponding to our observation model, and other variables as follows,

transformed parameters {

vector[s] cosine_term = cos(2.0*pi()*(year_fractions + 0.5));

matrix[n_st, n] log_omega;

for(i in 1:num_years){

for(j in 1:s) {

for(k in 1:n) {

log_omega[(i-1)*s + j, k] =

normal_lpdf(y[k] | mu + cosine_term[j]*scale, sigma);

}

}

}

}

Note that we create these variables in the transformed parameters section instead of the model section
(which would be more Stan like, as it would be easier to read the observation model in the model
section) to be able to access these variables in the generated quantities block without having to
redefine them. It’s an unusual case syntactical case as that the parameters governing the likelihood
of the HMM with hidden states marginalised is a function of the observation model likelihood.
Nevertheless, the observation model is specified in the line,

normal_lpdf(y[k] | mu + cosine_term[j]*scale, sigma);

The model then simply specifies the log posterior, which is a sum of priors over our parameters
(implicitly assumed to be uniform as they’re not specified) and the likelihood of

s|µ, σ, scale and transition matrix diagonal

which is specified as,

model {

matrix[n_st, n_st] p_full = diag_trans_to_full(tile(p_diag, num_years));

target += hmm_marginal(log_omega, p_full, rho);

}

where target corresponds to the log posterior.

As we’re interested in the posterior probabilities (for analysis and to initialize the inital state probabil-
ities in an iterative manner if this model is used on sequential batches of data) and sample paths, we
generate the following quantities,

generated quantities {

matrix[n_st, n_st] p_full = diag_trans_to_full(tile(p_diag, num_years));

matrix[n_st, n] posterior = hmm_hidden_state_prob(log_omega, p_full, rho);

array[n] int sampled_states = hmm_latent_rng(log_omega, p_full, rho);

}

for post-hoc analysis.

As the forward algorithm here, i.e. the function hmm marginal is inefficient for our use case, we can
define a more efficient function for bidiagonal transition matrices as follows. A discussion on the
computation of the forward algorithm can be found in Barber [2012], Murphy [2012].

functions {

real hmm_marginal_banded(matrix log_omega,

vector Gamma_diag,

vector rho) {
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int K = dims(log_omega)[1];

int N = dims(log_omega)[2];

vector[K] log_alpha;

vector[K] inner_sum;

vector[2] inner_vec;

vector[K] log_Gamma_diag = log(Gamma_diag);

vector[K] log_1mGamma_diag = log1m(Gamma_diag);

int min_i; int max_i;

log_alpha = log_omega[, 1] + log(rho);

if (N > 1) {

for (n in 2:N) {

for (i in 1:K) {

if (i == 1) {

inner_sum[i] = log_alpha[i] + log_Gamma_diag[i];

} else {

inner_vec[1] = log_alpha[i - 1] + log_1mGamma_diag[i - 1];

inner_vec[2] = log_alpha[i] + log_Gamma_diag[i];

inner_sum[i] = log_sum_exp(inner_vec);

}

}

log_alpha = log_omega[, n] + inner_sum;

}

}

return log_sum_exp(log_alpha);

}

}

Then, the model changes to,

model {

target += hmm_marginal_banded(log_omega, tile(p_diag, num_years), rho);

}

Other convenience functions we define are as follows,

functions {

matrix diag_trans_to_full(vector trans_mat_diag) {

int n = size(trans_mat_diag);

matrix[n, n] full_mat = diag_matrix(trans_mat_diag);

for (i in 1:(n - 1)) {

full_mat[i, i + 1] = 1 - trans_mat_diag[i];

}

full_mat[n, n] = 1.0 - 1e-6;

full_mat[n, 1] = 1e-6;

return full_mat;

}

vector tile(vector x, int r) {

int n = size(x);

vector[n * r] result;

for (i in 1:r) {

result[((i - 1)*n + 1):(i*n)] = x;

}

return result;

}

}
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C Appendix: discrete-index HMMs in Stan, hierarchical case

To change the model to allow for changing parameters as described in 3.2, we simply change the
following aspects of the Stan model.

The parameters are extended such that there is one for every data point, with further parameters
corresponding to hierarchical distribution parameters.

parameters {

vector<lower=0, upper=1>[n_st] p_diag;

real<lower=-3, upper=3> mu[n];

real<lower=0, upper=1> sigma[n];

real<lower=0, upper=2> scale[n];

vector<lower=0, upper=10>[s] p_a;

vector<lower=0, upper=10>[s] p_b;

real<lower=-3, upper=3> mu_m;

real<lower=0, upper=3> mu_s;

real<lower=0, upper=3> sg_s;

real<lower=0, upper=4> cs_s;

}

The observation model in the transformed parameters section changes to account for the varying
parameters,

normal_lpdf(y[k] | mu[k] + cosine_term[j]*scale[k], sigma[k]);

The model block changes to account for the hierarchical priors,

model {

vector[n_st] p_a_transformed = tile(p_a, num_years);

vector[n_st] p_b_transformed = tile(p_b, num_years);

mu ~ normal(mu_m, mu_s);

sigma ~ exponential(1/sg_s);

scale ~ exponential(1/cs_s);

p_diag ~ beta(p_a_transformed, p_b_transformed);

target += hmm_marginal_banded(log_omega, p_diag, rho);

}

We do not change the generated quantities block (and do not code up a more efficient version of
the forward backward algorithm as the generated quantities block is only run once at the end of
the inference process unlike the forward algorithm, which would be run multiple times during the
inference process as the parameters are changed).

We change the inference method to variational inference instead of maximum likelihood due to the
need to integrate out the hierarchical parameters during inference (as a maximum likelihood estimate
of parameters such as ai, bi in such an overparameterised model is perhaps unlikely to lie in the
posterior’s typical set). This is done by replacing model.optimize with model.variational. We
also increased (doubled with respect to Stan’s defaults) the number of gradient samples for the ELBO
calculation, which was needed to obtain reasonable outputs.

D Appendix: cts-HMM forward algorithms in Stan

A computationally inefficient example allowing for time varying transition matrices in the forward
algorithm is shown below. In this example, the time varying transition matrix is created using
Equation (2).
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functions {

real hmm_marginal_cts(matrix log_omega,

vector Gamma_diag,

vector rho,

vector ts) {

int K = dims(log_omega)[1];

int N = dims(log_omega)[2];

vector[K] log_alpha;

vector[K] inner_sum;

vector[K] inner_vec;

vector[K] log_Gamma_diag = log(Gamma_diag);

matrix[K, K] log_trans_mat;

int min_i; int max_i;

log_alpha = log_omega[, 1] + log(rho);

if (N > 1) {

for (n in 2:N) {

log_trans_mat = diag_rate_to_full(Gamma_diag);

log_trans_mat = matrix_exp((ts[n] - ts[n - 1]) * log_trans_mat);

log_trans_mat = log(log_trans_mat + 1e-10);

for (i in 1:K) {

inner_vec = log_alpha + log_trans_mat[, i];

inner_sum[i] = log_sum_exp(inner_vec);

}

log_alpha = log_omega[, n] + inner_sum;

}

}

return log_sum_exp(log_alpha);

}

}

E Appendix: other models

We implemented the continuous time Markov chain model in tensorflow-probability due to
out of the box support for time varying transition matrices. We implemented our SDE models using
torchsde due to support for differentiable SDE solvers.

The basic algorithm followed in both cases (as VI and maximum likelihood estimation are both
optimization problems) is,
log posterior or lower bound(params)← function(params, data) ...
parameters← ... ▷ variational params or params on which inference is done
optimizer← Optimizer(parameters, lr)
while loss not converged do

loss← −log posterior or lower bound(parameters)
grad← loss.grad()
params← optimiser.step(params, grad)

end while
posthoc analysis

F Appendix: Results of SDE models

Our SDE models ran into severe difficulties with inference. As an example, we assume the prior,dzaδdzbδ
dtδ

 =

 zbδ
−λ2zaδ − 2λzbδ
α ∗ σ+(zaδ )

 dδ +

 0
1

10−2

⊙ dWδ,

where α and λ are set to be constant, and σ+ corresponds to the softplus operation. Note that the
prior over z is a Matérn-3/2 Gaussian process. We use the following observation model,

sδi |tδi ∼ Laplace(sin(πtδi), 0.05).
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We tried to fit a variational posterior over tδi , using the variational SDE,dzaδdzbδ
dtδ

 =

 fa
nn(zδ; tδ)
f b
nn(zδ; tδ)

α ∗ σ+(f c
nn(zδ; tδ))

 dδ +

 0
1

10−2

⊙ dWδ, (3)

where fnn was parameterized using a neural network, to some data simulated from the prior. The
expected mean of the observation model for a few samples from the variational posterior are shown
below in Figure 5.

Figure 5: Results of our latent SDE models on synthetic data, showing a poor local maximum in the
ELBO reached by VI.

We also tried to use sparse Gaussian processes for placing priors and variational approximations on
zδ , utilizing random Fourier features [Hensman et al., 2016] to sample functions from these GPs to
work seamlessly with torchsde, finding no improvement in results. Pre-fitting a neural-network based
SDE prior (using spectra derived from the data) however results in a better fit to the ice core data
(illustrated below in Figure 6), however, results are still very (impractically) sensitive to initialisation.

Figure 6: Results of our latent SDE model using spectra to initialize the prior, showing a relatively
good fit to the ice core data. The blue line shows ground truth data, while the grey lines show the
mean of the observation model using different samples of the posterior over time.

Future work can also involve exploration of Kalman filtering algorithms for this problem, as our SDE
priors are valid models that may be assumed for state estimation in extended Kalman filtering.
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