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e The development of new manufacturing techniques such as 3D printing | .
: : : : : : Sustainable

have enabled the creation of previously infeasible chemical reactor designs. l | Targeted development goals
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e Now able to manufacture and optimize reactors with highly parameterised | o | prototyping |« New .

: _— . ) | applications >
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— Satisfy feasible manufacturability. . e e e . a

4 e Parameterize a pulsed-flow
coiled tube reactor
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Objective: maximise plug-flow characteristic e Define discrete simulation fidelities

Issues: Highly nonlinear, derivative-free, expensive e Experimentally validate

/ 1 ; : 1 50000 100000 150000 50000 100000 150000
\ . different fidelity simulations 0 2000 0 Loooor

/ Multi-fidelity Deep Gaussian Processes

o fi(z) = pefi1(x) +or(x) [ARL Q @

— Fails to capture nonlinear relationships between fidelities.

o fi(x)=pi(fi-1(z),z) + d0r(z) [NARGP] @
%

— Inaccurate uncertainty estimation.

o fi(w) = gs(fiy(x),x) [MF-DGP]
— End-to-end trained, higher fidelity data influences the prediction of Q @

\ lower fidelity functions. /

/— Algorithm 1 Deep GP-based Multi-fidelity Bayesian Optimization \

Require: fi(x)... fr(x), X, n
fortinl,...,T do
Generate n samples, x;, and evaluate f;(x) resulting in y;.
T+ <— average simulation time

end for
while Budget not exhausted do
Train DGP using x1,...,x7 and y1,...,yT

Solve UCB for highest-fidelity: z* < arg max,{ur(z) + 8/ %207 (z)|z € X}

Choose fidelity based on variance of DGP and simulation cost: t* <— argmax,{v:8'/ 20+ (z*)}
where v = max(7)/7¢

Evaluate f.+ (x™), add ™ to x:x and fix (™) to y

\ end while /
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Conclusions
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~wzz o Additive manufacturing — highly parameterised chemical reactors.
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e Optimization of coiled-tube reactor geometry — expensive, multi-fidelity black-box problem. ¥

e Multi-fidelity Bayesian optimization using Deep Gaussian processes — enables solution.

e Framework — extended to other problems involving highly-parameterized CFD simulations.
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