Deep Gaussian Process-based Multi-fidelity Bayesian Optimization for Simulated Chemical Reactors

Tom Savage, Nausheen Basha, Omar Matar, Antonio del Rio Chanona Imperial College London, United Kingdom

Imperial College London

- The development of new manufacturing techniques such as 3D printing have enabled the creation of previously infeasible chemical reactor designs.
- Now able to manufacture and optimize reactors with highly parameterised geometries.
 - Vital to ensure enhanced mixing characteristics;
 Satisfy feasible manufacturability.

Objective: maximise plug-flow characteristic Issues: Highly nonlinear, derivative-free, expensive

- Parameterize a pulsed-flow coiled tube reactor
 - Coil radius
 - Pitch
 - Inversion Location
 - Frequency
 - Amplitude
 - Reynolds Number
- Define discrete simulation fidelities
- Experimentally validate different fidelity simulations

Multi-fidelity Deep Gaussian Processes

- $f_t(x) = \rho_t f_{t-1}(x) + \delta_t(x)$ [AR1]
 - Fails to capture nonlinear relationships between fidelities.
- $f_t(x) = \rho_t(f_{t-1}(x), x) + \delta_t(x)$ [NARGP]
 - Inaccurate uncertainty estimation.
- $f_t(x) = g_f(f_{t-1}^*(x), x)$ [MF-DGP]
 - End-to-end trained, higher fidelity data influences the prediction of lower fidelity functions.

Algorithm 1 Deep GP-based Multi-fidelity Bayesian Optimization

Require: $f_1(x) \dots f_T(x), \mathcal{X}, n$

for t in $1, \ldots, T$ do

Generate n samples, \mathbf{x}_t , and evaluate $f_t(\mathbf{x})$ resulting in \mathbf{y}_t .

 $\tau_t \leftarrow \text{average simulation time}$

end for

while Budget not exhausted do

Train DGP using $\mathbf{x}_1, \dots, \mathbf{x}_T$ and $\mathbf{y}_1, \dots, \mathbf{y}_T$

Solve UCB for highest-fidelity: $x^* \leftarrow \arg\max_x \{\mu_T(x) + \beta^{1/2}\sigma_T(x) | x \in \mathcal{X}\}$

Choose fidelity based on variance of DGP and simulation cost: $t^* \leftarrow \operatorname{argmax}_t \{ \gamma_t \beta^{1/2} \sigma_t(x^*) \}$ where $\gamma_t = \max(\tau)/\tau_t$

Evaluate $f_{t^*}(x^*)$, add x^* to \mathbf{x}_{t^*} and $f_{t^*}(x^*)$ to \mathbf{y}_{t^*}

end while

Conclusions

- Additive manufacturing \rightarrow highly parameterised chemical reactors.
- Optimization of coiled-tube reactor geometry

 expensive, multi-fidelity black-box problem.
- Multi-fidelity Bayesian optimization using Deep Gaussian processes → enables solution.
- Framework \rightarrow extended to other problems involving highly-parameterized CFD simulations.

References

- Deep Gaussian Processes for Multi-fidelity Modeling: arXiv:1903.07320
- Multi-fidelity Gaussian Process Bandit Optimisation: arXiv:1603.06288
- Oscillatory fluid motion unlocks plug flow operation in helical tube reactors at lower Reynolds numbers ($Re \le 10$): DOI:10.1016/j.cej.2018.10.054
- Tom Savage would like to thank the Imperial College President's Scholarship Fund
- PREMIERE (EP/T000414/1)
- PREMIERE (EP/1000414/1)
 Dr Jonathan McDonough, Newcastle University
- Ilya Sandoval for discussion