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Abstract

New manufacturing techniques such as 3D printing have recently enabled the cre-
ation of previously infeasible chemical reactor designs. Optimizing the geometry
of the next generation of chemical reactors is important to understand the under-
lying physics and to ensure reactor feasibility in the real world. This optimization
problem is computationally expensive, nonlinear, and derivative-free making it
challenging to solve. In this work, we apply deep Gaussian processes (DGPs)
to model multi-fidelity coiled-tube reactor simulations in a Bayesian optimization
setting. By applying a multi-fidelity Bayesian optimization method, the search
space of reactor geometries is explored through an amalgam of different fidelity
simulations which are chosen based on prediction uncertainty and simulation cost,
maximizing the use of computational budget. The use of DGPs provides an end-
to-end model for five discrete mesh fidelities, enabling less computational effort
to gain good solutions during optimization. The accuracy of simulations for these
five fidelities is determined against experimental data obtained from a 3D printed
reactor configuration, providing insights into appropriate hyper-parameters. We
hope this work provides interesting insight into the practical use of DGP-based
multi-fidelity Bayesian optimization for engineering discovery.

1 Introduction

The fluid flow within a reactor greatly influences product quality and is highly dependent on the
reactor geometry. Plug-flow conditions, corresponding to a product distributions with low variance,
are desired. We study coiled tube reactors, which have been shown to demonstrate promising plug
flow performance in previous computational and experimental studies [13, 12, 17, 16, 4].

Computational fluid dynamics (CFD) simulations of coiled-tube reactors are expensive due to com-
plex flow characteristics, and gradient information is practically unavailable. The resulting expen-
sive black-box optimization problem is analogous to hyper-parameter optimization [23, 10, 5, 1],
with chemical discovery [7, 15], and engineering design [9, 18, 3] also examples of domains where
expensive black-box optimization problems are formulated. The problem can be stated as

x∗ = argmax
x∈X⊂Rd

f(x). (1)
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Figure 1: Left: The progression of multi-fidelity Bayesian optimization using DGPs as a multi-
fidelity model. Multiple different fidelity levels are selected for evaluation throughout optimization,
reducing optimization time. Right: the best coil geometry which has a relatively large coil radius
and low pitch.

In certain situations, computational expense can be traded off with accuracy via one or multiple fi-
delity parameters. Examples include training epochs [22, 21] in the context of hyper-parameter op-
timization, mesh fidelities in the context of finite element analysis [6], or combining real-time mea-
surements and predictions in industrial processes [20]. Including fidelity control within a Bayesian
optimization framework enables optimization with fewer computational resources whilst gaining a
‘high fidelity’ solution [11, 14]. Equation 1 then becomes

x∗ = argmax
x∈X⊂Rd

f(x, s) (2)

where potentially M different fidelities, s ∈ RM become controllable parameters.

Contribution: In this work, we present the novel real-world problem of optimizing the geometry of
a coiled tube reactor to maximize the plug-flow performance. We apply a state-of-the-art deep GP-
based multi-fidelity Bayesian optimization algorithm to identify novel reactor configurations using
an amalgam of different fidelity simulations, modeled using a DGP. Figure 1 demonstrates how our
approach takes advantage of lower fidelity simulations. Our approach contains no additional hyper-
parameters when compared to standard UCB Bayesian optimization. Having identified an optimal
geometry we investigate the physical insights to inform future design of pulsed-flow coiled tube
reactors.

2 Method

By applying DGPS within a Bayesian optimization framework, we enable an end-to-end model of
all fidelities. A more accurate model of higher-fidelities should enable the optimization procedure
to make more evaluations at lower, less expensive fidelities.

2.1 Model fidelities

Two fidelity aspects, axial and radial, can be varied when meshing is performed given a tube ge-
ometry. Figure 2 demonstrates how axial and radial fidelity effects the final mesh. In this work, we
combine both aspects into a single fidelity, and identify five discrete fidelity values. We leave the
case in which axial and radial fidelities are allowed to vary independently for future work.

To investigate the effect of fidelity on function accuracy, the five discrete fidelities were simulated
and compared with experimental data. Figure 3 validates the tracer concentration profile of simula-
tions using the five fidelities against two sets of experimental data. The objective of the optimization
is to maximize the plug-flow characteristic N (high values of N are an indicator for good radial
mixing and poor axial mixing), which approximately corresponds to fitting the concentration profile
with the tank-in-series model [16]. Figure 3 also demonstrates how increasing fidelity (and there-
fore cell count) results in a closer approximation to the experimental value of N , derived from each
concentration profile.
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(a) Left: Radial cross section depicting radial fi-
delity at values of 0, 0.5 and 1.

(b) Right: View of complete reactor at axial fi-
delity values of 0, 0.5, and 1.

Figure 2: An instance of coiled tube reactor geometry as effected by axial and radial fidelity.
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(a) Left: The concentration profile of a tracer
injection at five fidelity levels between 0 and 1
against experimentally obtained data. E(θ) rep-
resents dimensionless concentration as a function
of dimensionless time θ.
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(b) Right: The value of N corresponding to the
concentration profile from each fidelity, which has
been converted to cell count. N represents plug-
flow characteristic which is the quantity optimized
for.

Figure 3: Validation of five discrete mesh fidelities corresponding to different cell counts, across
two sets of experimental data under different conditions.

2.2 Model specification

To model each fidelity level we apply Deep Gaussian processes as demonstrated by Cutajar et al. [2].
DGPs provide a natural extension to sequentially trained multi-fidelity models, where a generating
function f at a given discrete fidelity t is modeled as a linear or nonlinear function of lower-fidelities
plus a mismatch term. For example in the nonlinear case ft(x) is given by

ft(x) = ρt−1(ft−1(x), x) + ϕt−1(x). (3)
Multi-fidelity DGPs combine ρt−1 and ϕt−1 into a single term gt−1 which is modeled using a GP,
resulting in a composition of GPs. For example for t different fidelity levels, and observations x at
each fidelity, the highest fidelity is modeled as

ft(xt, . . . , x1) = gt(...gt−1(g1(x1), xt−1), xt). (4)
In this work, we assume five discrete fidelity levels. Thus the resulting DGP has five layers (t = 5),
corresponding to simulations at fidelities equal to 0, 0.25, 0.5, 0.75, and 1. MF-DGPs are imple-
mented in Python using EMUKIT [19].

2.3 Multi-fidelity Bayesian Optimization

We present an approach for multi-fidelity Bayesian optimisation inspired by the MF-GP-UCB algo-
rithm [8]. We find that the number of hyper-parameters in MF-GP-UCB is generally unsustainable
for a problem with no prior knowledge, and a large number of fidelities. Algorithm 1 demonstrates
the simplified approach we apply, inspired by MF-GP-UCB. The two main differences being the use
of DGPs to model relationships between fidelities as opposed to separate models, and a simplified
fidelity selection which is directly tied to the computational expense of an evaluation at a given fi-
delity. The approach differs from standard UCB-BO by including an additional discrete sub-problem
to select the subsequent simulation fidelity, based on uncertainty and computational expense at each
fidelity.

We note that in choosing γt based on the points sampled to construct the initial DGP, the algorithm
contains no additional hyper-parameters than standard UCB Bayesian optimization. Additionally
γt may be updated after a simulation has been performed, more accurately reflecting the simulation
time at that fidelity.
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Algorithm 1 Deep GP-based Multi-fidelity Bayesian Optimization

Require: f1(x) . . . fT (x), X , n
for t in 1, . . . , T do

Generate n samples, xt, and evaluate ft(x) resulting in yt.
τt ← average simulation time

end for
while Budget not exhausted do

Train DGP using x1, . . . ,xT and y1, . . . ,yT

Solve UCB for highest-fidelity: x∗ ← argmaxx{µT (x) + β1/2σT (x)|x ∈ X}
Choose fidelity based on variance of DGP and simulation cost: t∗ ← argmaxt{γtβ1/2σt(x

∗)}
where γt = max(τ)/τt
Evaluate ft∗(x

∗), add x∗ to xt∗ and ft∗(x
∗) to yt∗

end while

3 Experimental results

Figure 1 demonstrates the MF-DGP based optimization, which shows the selection of multiple sim-
ulation fidelities throughout optimization.

We note that initializing the DGPs for multi-fidelity modeling requires simulations at each fidelity.
As Bayesian optimization typically demonstrates fast early convergence, this provides a downside
over the standard single fidelity approach, as more time is used to generate the initial data set.

3.1 Recommendations

Overall we find that it may not be beneficial in situations where a large number of discrete fidelities
are available, to apply all fidelities within an optimization framework. A large number of fidelities
results in a large number of hyper-parameters, more difficult to train multi-fidelity models such as
DGPs with more layers resulting in longer inference times, and potentially slower exploration. We
make the recommendation to apply 2 or 3 discrete fidelities in systems with no prior knowledge,
despite more being available. Future work will compare the multi-fidelity approaches with varying
number of fidelities with standard approaches and investigate the benefits, as well as apply similar
methods on more, industrial case studies for engineering discovery.

4 Conclusions

The optimization of coiled tube reactor geometry is critical to maximize plug-flow behavior and
investigate industrial viability. The optimization problem is formulated as an expensive black-
box problem. In this paper, we propose multi-fidelity Bayesian optimization using Deep Gaussian
processes to find good reactor configurations, taking advantage of less accurate but faster simula-
tions. We demonstrate experimental validation of five discrete fidelities, and present a modified
multi-fidelity Bayesian optimization algorithm which relies on fewer hyper-parameters than exist-
ing approaches. A multi-fidelity DGP provides correct quantification and propagation of uncertainty,
which we use to select not only the next experimental design, but also the fidelity of the evaluation
within the algorithm. Our approach can be extended to other problems involving parameterized CFD
simulations. This work demonstrates an industrially relevant use case of multi-fidelity deep Gaus-
sian processes for the optimization of expensive black-box functions. We hope it provides insight
and inspiration for people in the machine learning community to develop methods for a variety of
applied case-studies and problems.
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[9] Rémi Lam, Matthias Poloczek, Peter Frazier, and Karen E. Willcox. Advances in Bayesian
Optimization with Applications in Aerospace Engineering. In 2018 AIAA Non-Deterministic
Approaches Conference. American Institute of Aeronautics and Astronautics, January 2018.
URL https://doi.org/10.2514/6.2018-1656.

[10] Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization
methods. Acta Numerica, 28:287–404, 2019. URL https://doi.org/10.1017/
S0962492919000060.

[11] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Joshua Mar-
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A Simulation time at each fidelity

To dictate hyper-parameters γ at each fidelity, weighting the variance of the optimally selected
datapoint to select the next fidelity, the mean simulation time is used. This value can be updated
throughout the optimization, as a more accurate reflection of the computational cost of a simulation
is obtained. In certain simulations, such as the one we present here, adaptive time-steps are used.
This results in different simulation times at each fidelity as different reactor geometries will require
more or less refined time-steps to simulate. It may be possible to model the relationship between
parameter space and computational expense in this case, however we leave this for future work.
Figure 4 shows the individual and mean computational times at each fidelity for the initial datapoints.

B Meshing procedure

Given a set of geometric parameters, meshing was performed in Python using the CLASSY BLOCKS
library. Figure 5 provides some insight into how this is performed by plotting the generated mesh
structure at each step of the procedure.
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Figure 4: Computational time of simulations at each fidelity across the initial sampled data for multi-
fidelity Bayesian optimization.

Figure 5: Plots in-line with the X,Y, and Z axis demonstrating the main steps within the plotting
procedure for generating a coil given a set of parameters including coil radius, tube radius, pitch,
inversion %, and total volume.
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