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TL;DR

Our dual conditioning efficiently updates

variational parameters of a sparse GP in

sequential/streaming settings.

Unifying previous methods based on dual

variables, we approximate the full-data

posterior without revisiting previous batches.

Our method works well in sequential decision

making, particularly in batch acquisition of

new data.

Background

Bayesian optimization (BO) and active learning (AL)

BO: black-box optimization. AL: learning a decision boundary.

Both techniques combine an acquisition function α(·) and a surrogate

model to encode a trade-off between exploration and exploitation.

Standard BO/AL usually find one query points, however in high data

settings it may be beneficial to find a batch of query points.

Variational sparse surrogate GPmodel

Sparse GP methods swap computations on the full training set X
with a sparser set of inducing points Z := (zj)m

j=1, (u)j = f (zj), with the

approximate posterior q(u; m, V).
Common approach: use the variational ELBO to learn (m, V).
[1] show that optimal variational parameters decompose as:

m∗ ≡ V∗λ∗ and V∗ ≡ [K−1
zz + Λ∗]−1. (1)

We therefore reparameterize our variational parameters as λ and Λ.

Model & Methods

We show how to use dual conditioning for batch BO/AL. We build a

batch greedily by ‘fantasizing’ for each point an observation value and

updating the posterior [2, 3].

Our dual conditioning updates are as follows:

λ∗new←λ∗old +∇µ(1)Equ(fnew)[log p(ynew | fnew)],
Λ∗new←Λ∗old +∇µ(2)Equ(fnew)[log p(ynew | fnew)], (2)

where qu(·) is the posterior process and µ are the expectation

parameters of q(u).
The updates Eq. (2) are exact for Gaussian likelihoods and for

non-Gaussian likelihoods recreate the posterior well compared to the

offline solution (see Figure 1).

Novelty of dual conditioning: does not need an optimization loop [4]

or use previous data when conditioning the posterior on new

information.

We use Eq. (2) to iteratively add ‘fantasized’ data points from our α(·)
to build a batch of query points.

The method is independent of the acquisition function and can be

used to perform batch BO/AL for any simple acquisition function.

Sequential data classification
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Figure 1: Dual conditioning on streaming banana data set; data appears batch by batch (1–4). The
plot shows the decision boundary and the predictive class probability, with colour shading
and increasing the more certain the model is about the class. The inducing points are overlaid as
black dots. (a) Dual SVGP model trained with full data. (b) Dual SVGP model conditioned on the
data appearing in batches. (c) Online Variational Conditioning (OVC, [13]) model on batched data.

motivated by a tighter hyperparameter bound and efficient natural gradient steps for optimizing
the variational parameters. Here we show that they also offer decisive advantages for posterior
update computations: no need for additional approximations, and the computational complexity
O(m3 +m2nnew) remains linear in the number of conditioning points. We find that we can perform
effective one-step updates for most BO and AL problems, removing the need to run a variational
optimization loop with non-Gaussian likelihoods.

2 Methods

Gaussian process models define a prior over (latent) functions f ∼ GP(0, κ) that is character-
ized completely by a covariance function κ(x,x′). When a GP prior is combined with a data set
D = (X,y) = {(xi, yi)}ni=1 of input–output pairs and a Gaussian likelihood, computational com-
plexity of the posterior process is O(n3). If the likelihood is non-conjugate, a common technique
is to perform variational inference. Fitting a Variational GP model (VGP, e.g. [17]) requires mul-
tiple O(n3) operations in an optimization loop until convergence. Sparse Variational GP (SVGP)
models [9, 18] overcome the cubic scaling while simultaneously dealing with non-Gaussian like-
lihoods. They swap computations on the full training set X with a sparser set of inducing points
Z := (zj)

m
j=1, (u)j = f(zj), with the approximate posterior q(u;m,V). The overall complexity is

O(nm2), where m≪ n. The induced posterior of the function values at all other points is:

qu(f) = N(f ;Am∗,Kxx −AK−1
zz A

⊤ +AV∗A⊤), (1)

where Kxx is an n × n matrix with κ(xi,xj) as the ijth entry, A = KxzK
−1
zz . Kxz and Kzz

are defined similarly to Kxx. To predict with an SVGP we need to infer the variational parameters
(m∗,V∗) at the optimum of the evidence lower bound [ELBO, 9]. The ELBO is also used to learn
the hyperparameters θ of kernel and likelihood.

Adam et al. [16] showed that the optimal variational parameters (m∗,V∗) are:

m∗ ≡ V∗λ∗ and V∗ ≡ [K−1
zz +Λ∗]−1. (2)

The optimal dual variables (λ∗,Λ∗) are found using the following iteration until convergence:

λt = (1− ρt)λt−1 + ρt∇µ(1)Equ(f)[log p(y | f)],
Λt = (1− ρt)Λt−1 + ρt∇µ(2)Equ(f)[log p(y | f)],

(3)

where (µ(1),µ(2)) are the expectation parameters of the approximating distribution q(u), so µ(1) =
m and µ(2) = V+mm⊤, and λ0 and Λ0 are initialized to zero. As pointed out in [17], these are in
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Figure 1: Sequential banana data set: our one-step updates on batches

give similar solution to multiple optimization steps on full training data.

Batch acquisition in Bayesian optimization

We apply our batch method to the lunar landing problem where the

goal is to land a rocket successfully on a specific region of a lunar

surface under stochasticity.

The acquisition function is a product of Expected Improvement of the

regression model and the predictive mean of the classification model.

Therefore, needing both a Gaussian and non-Gaussian surrogate

model.

Our method shows an improvement over the non-batch baseline (see

Figure 2).
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Figure 2: Bayesian optimization on a lunar landing setup; the aim is to successfully land on the
surface between the flags. The stochasticity in the initial state and in the environment caused due to
wind makes the problem challenging. We compare the batch solution with fantasization against the
non-batch solution showcasing the benefit of batch acquisition in such noisy setups.

The streaming banana classification experiment is the same as in [13]. The data set is divided into
four batches of 100 points each. In each step, only the current batch and previously inferred varia-
tional parameters are accessible; therefore, one must use an online model to condition on new data.
We compare the decision boundary and predictive class probability for three models in Fig. 1. As
an oracle baseline, an offline SVGP model with 25 inducing points and Matérn-5/2 kernel is trained
on the full data, see Fig. 1a. Our method uses Dual Conditioning (Eq. (4)) on the streaming data
(batches 1–4). For the OVC method, we run the code published by Maddox et al. [13]. Their method
essentially initializes new models on each batch and then combines them, hence the increasing num-
ber of inducing points. The evolution of the class probability of dual SVGP and OVC is shown in
Fig. 1b and Fig. 1c. The class probability obtained by the dual SVGP model after seeing the final
batch closely matches that of the offline SVGP model. In contrast, the OVC method does not recover
the full-data decision boundary, and its uncertainty does not match the offline baseline well.

The lunar lander problem is a challenging rocket optimization problem that aims to land success-
fully in a specified target region, as considered previously by [22, 23]. Here, every action performed
by the lander results in a reward, and the aim is to optimize the total reward. Various environmen-
tal components add stochasticity, making it a challenging problem. The setup with the sources of
stochasticity and multiple states of the lander is shown in Fig. 2. The search space spanning over
R12 is high-dimensional; however, batching and fantasizing the data points can help overcome the
difficulty. We model the problem using a regression model that aims to maximize the reward and a
classification model for whether the landing was successful, using Alg. 1. The acquisition function
is a product of Expected Improvement of the regression model and the predictive mean of the clas-
sification model. The non-Gaussian likelihood of the classification model prevents the use of many
batch acquisition functions which exploit properties unique to Gaussian likelihoods, such as q-KG
[8]. Our method is agnostic to the likelihood, and so allows batching and fantasizing in this chal-
lenging setup. The same set of 24 initial data points is used and optimized for 50 iterations for both
models. The batch model builds batches of 20 query points. We run the experiment with 10 random
initial observations and plot mean and individual rewards along with the BO iterations in Fig. 2.

4 Discussion and Conclusion

In this paper, we have unified previous work on efficiently conditioning sparse GPs on new data;
our framework allows for the same variational method irrespective of the likelihood. In big-data
regimes our method can be used to efficiently incorporate new information into the posterior. We
show the usefulness of our technique on batch BO/AL with an experiment on a complex stochastic
problem. In future work, we wish to apply our method in model-based reinforcement learning as
well as extending it to updating Z and θ in the fully online setting discussed by [14].
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Figure 2: We test our method on lunar landing problem where we need

to find optimal parameters of landing a rocket with wind stochasticity.

In summary, we present dual conditioning, a method to condition

data quickly into a sparse GP posterior. We show its usefulness for

BO and AL.

More details…

See the paper:

arxiv.org/abs/
2211.01053

References

[1] V. Adam, P. Chang, M. E. E. Khan, and A. Solin, “Dual

parameterization of sparse variational Gaussian processes,” Advances

in Neural Information Processing Systems, 2021.

[2] D. Ginsbourger, R. L. Riche, and L. Carraro, “Kriging is well-suited to

parallelize optimization,” in Computational intelligence in expensive

optimization problems, pp. 131–162, Springer, 2010.

[3] T. Desautels, A. Krause, and J. W. Burdick, “Parallelizing

exploration-exploitation tradeoffs in Gaussian process bandit

optimization,” Journal of Machine Learning Research, 2014.

[4] W. J. Maddox, S. Stanton, and A. G. Wilson, “Conditioning sparse

variational Gaussian processes for online decision-making,” Advances

in Neural Information Processing Systems, 2021.

NeurIPSWorkshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems, 2022 paul.chang@aalto.fi


