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Abstract

We study the problem of sequential experimental design to estimate the parametric
component of a partially linear model with a Gaussian process prior. We consider
an active learning setting where an experimenter adaptively decides which data to
collect to achieve their goal efficiently. The experimenter’s goals may vary, such
as reducing the classification error probability or improving the accuracy of esti-
mating the parameters of the data generating process. This study aims to improve
the accuracy of estimating the parametric component of a partially linear model.
Under some assumptions, the parametric component of a partially linear model
can be regarded as a causal parameter, the average treatment effect (ATE) or the
average causal effect (ACE). We propose a Bayesian sequential experimental de-
sign algorithm for a partially linear model with a Gaussian process prior, which is
also considered as a sequential experimental design tailored to the estimation of
ATE or ACE. We show the effectiveness of the proposed method through numeri-
cal experiments based on synthetic and semi-synthetic data.

1 Introduction

Statistical inference and machine learning can be described as the problem of deriving some de-
cisions from data. For example, the goal of many statistical inference problems is to accurately
estimate some feature of the distribution of the data-generating mechanism, while the purpose of
prediction problems is to construct a predictor with good prediction performance. Many statistical
inference methods and machine learning algorithms first gather a large amount of data randomly
sampled from the underlying data-generating distribution. Then they output an estimation of an es-
timand or a predictor. However, in some cases, we have limited resources for collecting such data.
In such cases, it is valuable to determine how we can use these resources as much as possible. In
statistics, sequential experimental design studies ways to sample adaptively to improve estimation
efficiency [1, 2, 3]. In machine learning, the study of sequentially obtaining labeled data from un-
labeled data is called active learning [4, 5, 6]. The study on a sequential design strategy for global
optimization of black-box functions is also called Bayesian optimization [7]. In a sequential ex-
perimental design, the sample point to be obtained is determined adaptively so that the estimation
accuracy of the estimand is as good as possible. A typical estimand is the regression coefficients of a
linear regression model [1, 3]. In this study, we consider a sequential experimental design in which
estimand is a causal parameter of the data-generating distribution. The problem of causal inference,
which is the estimation of the effect of changing the value of a treatment variable on the outcome
variable, is one of the most important problems in data science. Although there are other studies of
sequential experimental design for causal inference, these studies aim at estimating the structure of
the causal graph [8, 9]. On the other hand, our study aims at estimating a causal parameter known
as the average treatment effect (ATE) or the average causal effect (ACE).
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In this study, the relationship between variables is modeled by a partially linear model. The study
of a partially linear model dates back to Engle et al [10]. The partially linear model combines the
linear and nonparametric regression models. Under some assumptions, the linear component of the
model can be regarded as a causal parameter, and Double/Debiased machine learning (DML) [11],
which has been actively studied in recent years, can be seen as one of the estimation algorithms of
it. In this study, we consider the partially linear model proposed in [12], which assumes a Gaussian
process prior distribution for the nonlinear component. We define an information gain based on the
posterior distribution of the causal parameter. We can efficiently estimate the causal parameter by
adaptively obtaining data with the largest information gain.

2 Partially Linear Model with Gaussian Process Prior

This study investigates the causal effect of the binary treatment variable T ∈ {0, 1} on the outcome
variable Y ∈ R. In addition to T, Y , we assume that there are some other covariates X ∈ Rd. We
model the relation between T, Y,X by the following model.

Yi = θTi + f(Xi) + εi, E [εi|Ti,Xi] = 0, (1)

where f(·) is an unknown nonlinear function from Rd to R. The model (1) is an example of partially
linear models since the right-hand side is linear in Ti and nonlinear in Xi. Furthermore, we assume
that the nonlinear function f follows a Gaussian process prior GP(0, C(·, ·;ω)) defined by the
covariance function C(·, ·,ω) with parameter ω, and the error term εi is i.i.d. with a Gaussian
distribution N (0, s−1

ε ). This is an instance of the model proposed in [12].

We are interested in the estimation of θ since it can be considered as a causal parameter E[Y (1) −
Y (0)] or Edo(T=1)[Y ]− Edo(T=0)[Y ] under some assumptions. See the appendix A for the relation
between θ and causal parameters. Among various possible methods for estimating θ, we consider
an estimation method based on the posterior distribution of θ. For this purpose, we assume that θ is
a random variable with a Gaussian prior N (µθ,0, s

−1
θ,0). Given the observations t = [t1, . . . , tn]

⊤,
y = [y1, . . . , yn]

⊤, and X = [x⊤
1 , . . . ,x

⊤
n ]

⊤, the posterior distribution of θ is given by

p(θ|t,y,X) = N (µθ,n, s
−1
θ,n), (2)

µθ,n = sθ,n(sθ,0µθ,0 + t⊤(s−1
ε In +Φ)−1y), (3)

sθ,n = sθ,0 + t⊤(s−1
ε In +Φ)−1t, (4)

where In is the n-dimensional identity matrix and Φ is the covariance matrix of
[f(x1), . . . , f(xn)]

⊤ given by

Φ =


C(x1,x1;ω) C(x1,x2;ω) · · · C(x1,xn;ω)
C(x2,x1;ω) C(x2,x2;ω) · · · C(x2,xn;ω)

...
...

. . .
...

C(xn,x1;ω) C(xn,x2;ω) · · · C(xn,xn;ω)

 . (5)

The posterior mean µθ,n is the Bayes optimal estimator in the sense that it minimizes the Bayes risk
function for the squared error loss.

The model (1) has the hyperparameters µθ, sθ,ω, sε. One way to handle them is to assume a prior
distribution for them. In that case, however, the analytic form of the posterior distribution of θ is
no longer available, so we have to rely on numerical computation methods such as Markov Chain
Monte Carlo (MCMC) method. These calculation methods are not the subject of our study, we refer
the reader to [12] for details.

3 Sequential Experimental Design based on Information Gain

In this section, we first describe the problem of the sequential experimental design. Let Xpool be
the set of d-dimensional candidate covariate vectors to sample. Our problem of sequential experi-
mental design is to determine xn+1 ∈ Xpool and tn+1 ∈ {0, 1} given t,y, and X . Inspired by the
information-theoretic methods for active data collection [1, 3, 6, 7], we define the information gain
for our problem as follows.

g(x, t) = H [p(θ|t,y,X)]− Ep(y|t,y,X,t,x) [H [p(θ|t,y,X, t, y,x)]] , (6)
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where H[p(θ)] = −
∫
p(θ) ln p(θ)dθ represents the differential entropy. This means that we consider

data that reduces the entropy of the posterior distribution of θ the most informative. The optimal
design is to select (xn+1, tn+1) that maximizes the information gain, that is,

(xn+1, tn+1) = argmax
x∈Xpool,t∈{0,1}

g(x, t). (7)

Since the posterior distribution is Gaussian, its entropy is given by

H[p(θ|t,y,X)] =
1

2
(1 + ln 2πs−1

θ,n). (8)

Noting that the right-hand side of (8) does not depend on y and the first term in (6) does not depend
on (x, t), (7) can be written as

(xn+1, tn+1) = argmin
x∈Xpool,t∈{0,1}

1

2

(
1 + ln 2π(sθ,n+1(x, t))

−1
)
, (9)

where
sθ,n+1(x, t) = sθ,0 + [t⊤, t](s−1

ε In+1 +Φ′(x))−1[t⊤, t]⊤, (10)

Φ′(x) =


C(x1,x1;ω) C(x1,x2;ω) · · · C(x1,xn;ω) C(x1,x;ω)
C(x2,x1;ω) C(x2,x2;ω) · · · C(x2,xn;ω) C(x2,x;ω)

...
...

. . .
...

...
C(xn,x1;ω) C(xn,x2;ω) · · · C(xn,xn;ω) C(xn,x;ω)
C(x,x1;ω) C(x,x2;ω) · · · C(x,xn;ω) C(x,x;ω)

 . (11)

The proposed optimal design (7) is similar to the methods proposed in [1, 3, 6, 7]. However, the
objective of those studies is to estimate the function that represents the relationship between inputs
and outputs, or the whole data-generating distribution, whereas the objective of our study is to
estimate the causal parameter θ. In our problem, the nonlinear function f is a nuisance parameter,
that is, it is noise for estimating θ. In [13], it is pointed out that plug-in estimation, in which the
data-generating distribution is estimated and then the causal parameter is estimated, may not have
the desired properties. They call targeted learning a learning method that is tailored to an estimand
such as a causal parameter, so we can call our method a targeted sequential experimental design.

4 Experiments

In this section, we illustrate the performance of the optimal design on synthetic data and semi-
synthetic data.

4.1 Experiments on Synthetic Data

We illustrate the behavior of the optimal design using synthetic data. In this experiment, we generate
θ according to the prior distribution N (µθ,0, s

−1
θ,0), where the hyperparameters are set to µθ,0 =

0, sθ,0 = 1.0. We assume that the covariance function C(·, ·,ω) of the Guassian process prior for
the nonlinear function f is the RBF kernel

C(x,x′;ω) = exp

(
−∥x− x′∥2

2ω

)
, (12)

with the hyperparameter value ω = 1.0. We construct the set of candidate covariate vectors Xpool

by generating each element from N (0, 1.02). The dimension of a covariate vector is d = 10 and
Xpool contains 400 sample. We compare the optimal design, which determines the drawing sample
according to (7), with the random design, which randomly draws (xn+1, tn+1) from Xpool×{0, 1}.
The outcome variable Yi is generated according to the model (1), where the precision parameter of
the noise sε = 1.0. In both designs, the first 10 samples were randomly selected from Xpool×{0, 1},
and after that, the samples were selected according to each rule. The estimator outputs the posterior
mean µθ,n, and we examined the absolute error |µθ,n − θ|. Figure 1 shows the absolute error curves
of the Bayes estimator for the random design case and the optimal design case as the functions of
the sample size. The depicted absolute error is the average of 1000 experiments. We can see that
the estimation error of the Bayes estimator in the optimal design case is much smaller than in the
random design case, especially when the sample size is small.
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Figure 1: Experimental results on synthetic
data. Average±95% confidence intervals are
depicted.
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Figure 2: Experimental results on semi-
synthetic data. Average±95% confidence inter-
vals are depicted.

4.2 Experiments on Semi-synthetic Data

In real-world applications, ground truth causal effects are rarely available. Thus, we evaluate the
optimal design through an experiment on semi-synthetic data. For the evaluation, we use pre-
established benchmarking data for causal inference. The dataset is constructed from the Infant
Health and Development Program (IHDP) [14]. Each observation consists of 25 covariates, an
indicator variable indicating whether the infant received special care, and an outcome variable rep-
resenting the final cognitive test score. The dataset has 747 observations. Since the dataset also
contains counterfactual data, we can calculate the treatment effect for each observation. We assume
that the average of them is the true value of the ATE, and it is 4.021. We conducted almost the same
experiment as for synthetic data, with a few minor modifications to the experimental conditions. The
hyperparameters are set to µθ,0 = 0, sθ,0 = 1.0. The dot product kernel

C(x,x′, ω) = ω + x⊤x′, (13)

with the hyperparameter value ω = 1.0 is used for the Gaussian process prior. The Bayes optimal
estimator requires the value of sε. As a rough estimator of sε, we used the inverse of the sample
variance of y. As in the previous experiment, We compare the optimal design and random design.
The set of candidate covariate vectors Xpool is constructed by randomly choosing 400 observations
from the total of 747 observations. In both designs, the first 50 samples were randomly selected from
Xpool, and after that, the samples were chosen according to each rule. We examined the absolute
error of the posterior mean |µθ,n − ATE|. Figure 2 shows the absolute error curves of the Bayes
estimator for the random case and the optimal design case as the functions of the sample size. The
depicted absolute error is the average of 1000 experiments. As in the results of synthetic data, we
can see that the estimation error of the Bayes estimator in the optimal design case is much smaller
than in the random design case, especially when the sample size is small.

5 Conclusion

In this paper, we proposed a Bayesian sequential experimental design algorithm tailored to estimate
the parametric component of a partially linear model with a Gaussian process prior. Under some
assumptions, the parametric component of a partially linear model can be regarded as a causal pa-
rameter, the average treatment effect (ACE) or the average causal effect (ACE). Therefore, we can
say that the proposed method is a sequential experimental design tailored to the estimation of a
causal parameter. In general, causal parameters can be a function of the data generating distribution.
ATE or ACE is one of the causal parameters, and there are various other causal parameters, such as
conditional average treatment effect (CATE) or effect modification. Our study assumed a partially
linear model for the data generating mechanism. However, various modeling approaches are possi-
ble for the data generating mechanism. We believe that our proposed method can be applied to other
combinations of causal parameters and data-generating mechanisms, which is a subject for future
work.
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A Partially Linear Model and Causal Inference

In this section, we show that the linear component of a partially linear model can be regarded as a
causal parameter.

In the Neyman-Rubin causal model, the existence of potential outcomes Y (0), Y (1) is assumed [15].
It is also assumed that Y = TY (1) + (1− T )Y (0). The average treatment effect (ATE) is defined as

ATE = E[Y (1)]− E[Y (0)]. (14)

When the condition Y (0), Y (1) ⊥⊥T |X holds, the treatment assignment is called strongly ignorable.
When the strongly ignorable condition holds,

E[Y (1)]− E[Y (0)] = EX [E[Y (1)|X]]− EX [E[Y (0)|X]] (15)

= EX [E[Y (1)|X, T = 1]]− EX [E[Y (0)|X, T = 0]] (16)
= EX [E[Y |X, T = 1]]− EX [E[Y |X, T = 0]]. (17)
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In our model (1), E[Y |X, T ] = θT + f(X). Thus,

EX [E[Y |X, T = 1]]− EX [E[Y |X, T = 0]] = EX [θ + f(X)]− EX [f(X)] (18)
= θ. (19)

Next, we show that θ can also be regarded as a causal parameter in Pearl’s structural causal inference
framework [16]. We assume that the data is generated according to the following structural equation
model.

X = εX , (20)
Y = θT + f(X) + εY , E[εY ] = 0, (21)
T = ψ(X, εT ), (22)

where ψ is some nonlinear function, and εX , εY and εT are independent. These structural equations
specify probability distributions p(y|t,x), p(t|x) and p(x). In this case, the distribution of X and
Y after an intervention T = t is

pdo(T=t)(x, y) = p(y|t,x)p(x). (23)

Marginalizing this distribution with respect to X , we obtain

pdo(T=t)(y) =

∫
p(y|t,x)p(x)dx. (24)

The average causal effect is defined as

ACE = Edo(T=1)[Y ]− Edo(T=0)[Y ], (25)

where

Edo(T=t)[Y ] =

∫
y · pdo(T=t)(y)dy. (26)

If the order of integration can be exchanged, Edo(T=t)[Y ] = θt+ E[f(X)], and then ACE = θ.

B Derivation of the Posterior Distribution of θ

Let z = [z1, . . . , zn]
⊤ = [f(x1), . . . , f(xn)]

⊤. From the assumption, z follows a Gaussian distri-
bution N (0,Φ). The exponent of p(y, z|θ, t,X) = p(y|z, θ, t,X)p(z) can be written as

−1

2

([
y
z

]
−A−1b

)⊤

A

([
y
z

]
−A−1b

)
+ const., (27)

where

A =

[
sεIn −sεIn
−sεIn sεIn +Φ−1

]
, (28)

b =

[
sεθt
−sεθt

]
. (29)

The inverse matrix of A is given by

A−1 =

[
s−1
ε In +Φ Φ

Φ Φ

]
. (30)

Thus, p(y|θ, t,X) is a Gaussian with mean θt and covariance matrix s−1
ε In +Φ. The exponent of

p(θ|t,y,X) ∝ p(y|θ, t,X)p(θ) can be written as

−1

2

((
sθ + tT (s−1

ε In +Φ)−1t
)
θ2 − 2

(
sθµθ + tT (s−1

ε In +Φ)−1y
)
θ
)
+ const. (31)

Thus, p(θ|t,y,X) is a Gaussian with mean µθ,n and variance s−1
θ,n given in (3) and (4), respectively.
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